
Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 1

Artificial Intelligence and Decision Making

Collaborative Common Path
Planning in Large Graphs

This paper studies two-agent path planning algorithms in graphs, where the two
agents are assigned independent initial and goal states but are incentivized to

share some parts of their travel glued together by scaling down the duet cost function
when they move in formation. Applications range from ride sharing to formation
flights. After presenting an optimal but unscalable algorithm, we propose a decoupled
approach that separates spatial and temporal reasoning by first geometrically finding
formation and breaking nodes in the graph then temporally synchronizing the agents
on the formation node by adapting their speeds along their paths in the graph.
We also introduce an original heuristic function, which accounts for the potential
formation paths in the graph and that is used to guide A* search on a cross-product
graph representing the coordinated moves of the agents. We finally experiment our
framework and compare its variants on grid-like and aircraft formation flight problems.

F. Teichteil-Koenigsbuch,
G. Poveda
(Airbus AI Research)

E-mail: florent.teichteil-koenigsbuch@airbus.com

DOI: 10.12762/2020.AL15-04

Introduction

Path planning has a long history of research dating back to the early
days of Artificial Intelligence. Many variants have been studied, from
continuous motion planning [2] to discrete optimization in graphs [5]
including sampling approaches [16], investigating both single-agent
[9] and multi-agent [23] settings. Multi-agent frameworks have mainly
looked at optimizing trajectories for a set of agents while avoiding col-
lisions [13][11], or at coordinating the trajectories of a set of agents
to make them accomplish a common group objective; e.g., building
formation patterns [7][4][1]. A specific case consists in incentiviz-
ing two or more agents to execute paths that share common moves;
i.e., moves with the same current and next positions simultaneously,
by reasoning about a cost function, which is lower when the agents
move in formation side by side than when they follow different routes.
In this paper we refer to this problem as "Collaborative Common Path
Planning" (CCPP), depicted in Figure 1.

Applications of CCPP range from ride sharing planning, where two
or more traveling people save money if they share the same vehicle
along a common portion of their routes, to freight dispatch and rout-
ing where operational costs can be significantly reduced by transiting
goods via intermediate common hubs, including comprehension of
behaviors observed in nature, such as formation flights of migratory
birds. Actual research works on CCPP, which have mainly originated

rendezvous
point

agent 1's vertices

agent 2's vertices

agent 1's solo moves/edges

agent 2's solo moves/edges

formation moves/edges

breaking
point

c = 0.75
c = 1.5

t = 0.1

t = 0.0

t = 0.4

t = 0.6
c = 0.75

c = 0.25

c = 1

t = 0.9

t = 1.0

t = 2.0

c = 2.5

c = 1

c = 2

t = 1.5

t = 1.7

Figure 1 – Collaborative common paths example. Agent 1 (resp. 2)'s path
duration is 1.7 (resp. 2.0). The agents move together in formation from
t = 0.6 where they meet at the same navigation point until t = 1.4 where they
break the formation. The global cost of their paths is 12.25.

Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 2

from this latter example to the best of our knowledge [17][22][21],
have recently studied how aircraft routes can be planned so that two
given aircraft whose geodesic routes from their departure airports
to their destination airports are spatially close can fly one behind the
other along a common portion of their flight routes to save global fuel
burn. Indeed, the lift of the follower aircraft can be increased if it flies
in the aerodynamic vortex created by the leader aircraft wings, allow-
ing it to reduce the thrust and thus reduce fuel burn. Some works also
studied leader-follower path planning for mobile robots [4], but as
CCPP for aircraft; all of these works assume the vehicles to be mov-
ing in continuous spaces using geometrical equations.

However, in reality, aircraft routes are rather defined over worldwide
navigation graphs. The other aforementioned applications of CCPP
also involve moving in discrete graphs rather than in continuous
spaces. In this paper we study what we believe to be the first attempt
to solve the CCPP problem in graphs, also paying special attention to
making our approach scalable. We assume two agents to be moving
in their own graphs – which can potentially be the same – in order to
minimize the overall cost of reaching their goal vertices for each of
them, while having the opportunity to significantly cut down atomic
moving costs when they travel along specific pairs of (Agent 1’s
edge, Agent 2’s edge) at the same time. Figure 1 represents the spe-
cific case where the graphs of each agent are identical. Importantly,
our model assumes that the agents can control their speeds in order
to synchronize at potential joining points from where they can move
in formation, and that these speeds (or similarly, edge durations)
can only be chosen from a discrete set – as is the case in aircraft
formation flight, where edge cost evaluation is based on very time-
consuming aerodynamic models that prevent a continuum of edge
duration values from being explored. We present an optimal but non-
scalable algorithm based on a transformation of the CCPP problem
to a single agent path planning problem in the cross product of the
agents’ graphs, which can then be solved by heuristic search meth-
ods like A*, as well as an efficient but suboptimal spatio-temporal
decoupling algorithm. We also discuss generic but non informative
heuristics and propose efficient geometric heuristics specific to
graphs defined on Euclidean spaces. We finally experiment with our
framework and compare its variants on grid-like problems, as well as
world-scale formation-flight experiments using real aircraft models
and world flight networks.

Related work

There is an abundant literature on multi-agent path planning that may
take a close look at the research that we investigate in this paper.
The graph search community has investigated for many years multi-
agent collision-free path planning [6]. Even though the objective of
this research consists in minimizing the team cost-to-go summed
over all of the agents, it sensibly differs from our work in the sense
that avoiding collisions is the opposite objective to incentivizing the
agents to meet and share common paths. Another line of research is
aimed at planning dynamic formations for many moving agents [8],
[19]. However, formations have a different meaning to ours: while
we want the agents to move along the same graph edges to reduce
their moving costs, like bird formation flights, those works dynami-
cally assign predefined geometrical formation patterns to a group of
agents that do not necessarily travel along the same edges. Rideshar-
ing trip planning [18] is closer to our research, since the objective is
to share vehicles among different passengers starting and ending at
different locations. Since they share the same car, those passengers

necessarily travel along the same edges on a portion of their trip.
However, most works on ridesharing that we are aware of consider
predefined meeting points, whereas we notably consider meeting
points as part of the optimization problem itself. In ridesharing with
passenger transfer optimization [3], the path from the passengers’
starting location to the meeting point and from the breaking point to
their ending location is additionally optimized, but the meeting and
breaking points are still predefined and fixed. Along the same line
of research, multi-modal path planning [15][12] look at optimizing
the global flow of passengers between different sources and targets,
while partly travelling by using common transportation means. How-
ever, multi-modal stations that serve as meeting and breaking points
are also fixed, as for the meeting and breaking time tables. To the best
of our knowledge, aircraft formation flight optimization in continuous
airspace [22][17][21] is the closest problem to ours. Indeed, the
specificity of the cost function for this problem, which reduces the
sum of agent costs when they travel along the same edges, makes
this line of research quite singular in the multi-agent landscape. We
believe that our work is one of the first to investigate formation flight
planning in discrete structured airspaces.

Background

There has been a long history of research on path planning in graphs.
Many single-agent algorithms are based on the famous A* algorithm
[9][10] which allows for lazy and partial exploration of the agent’s
navigation graph by guiding the search with heuristic estimates of the
distance from the current node to the goal. Since we will use single-
agent path planning as a generic tool to solve CCPP via a transforma-
tion to single-agent path planning, we only present here the plain A*
algorithm. The interested reader is invited to look at [20] for state-of-
the-art alternatives to A* for solving the single-agent transformation
of our problem.

A* reasons about graph ()= ,V E , which represents the feasible
moves of the agent, with the edges being labelled by a cost func-
tion :c E +→ . This iteratively expands the vertices of the graph
from the starting vertex sv V∈ up to reaching the goal vertex gv V∈
via a minimum-cost path. Vertex expansion is guided by a heuris-
tic function 2:h V +→ which gives numerical under-estimates
of the distance from the current vertex to the goal. In order for A*
to be optimal, the heuristic function needs to be both admissible,
i.e., by noting as ()1 2,C v v∗ the optimal path between any distant
vertices 1v V∈ and 2v V∈ , we have () ()1 2 1 2, ,h v v C v v∗ , and
monotonic, i.e., for any edge e E∈ and vertex v V∈ we have
() () ().in(), .out(),h e v c e h e v+ by noting as .in()e (resp. .out()e)

the incoming (resp., outgoing) vertex of e .

CCPP problem formulation

Let ()() () ()= ,i i iV E be the labeled graph of Agent {1,2}i∈ , which
represents its possible moves in its own navigation network. Both
agents’ navigation networks do not need to be identical, nor semanti-
cally equivalent. Graph vertices (resp., edge ends) stand for positions
(resp., moves). Edges are equipped with label pairs (),c d repre-
senting the cost and the duration of each move. Whereas standard
single-agent path planning algorithms do not reason about moving
duration, collaborative common path planning needs move duration
information in order to temporally synchronize the two agents on ver-
tices where they can initiate a formation. We add exponent notations

Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 3

()i to labels c and d, and edge flows in and out to indicate to which
agent the concept is related.

We note as (1) (2)E E⊗ ⊂ × the set of edge pairs for both agents on
which formations are possible. Elements of ⊗ must be temporally
coherent, meaning that both agents’ moves must have the same dura-
tion when in formation; i.e., () () ()(1) (2) (1) (1) (2) (2), , =e e d e d e⊗∀ ∈ .
In Figure 1, the dashed yellow lines are elements of ⊗ . Depending
on the application, other properties might be required typically that
the start and end positions of the agents always be the same in the
case where their navigation graphs are identical (e.g., vehicles mov-
ing in a same route network, as in Figure 1). It is also required that the
two agents visit candidate formation vertices at the same time; i.e.,

() ()(1) (1) (2) (2)=e eδ δ for ()(1) (2),e e ⊗∈ , where ()() : ii Eδ +→
represents the time when the incoming vertex of an edge is visited by
Agent i in its own graph (implicitly dependent on the previously visited
vertices from the start up to the edge’s incoming vertex).

Let
()

()

i
g
i

s

v
v

Π be the set of all possible timed sequences of Agenti i’s adja-
cent edges, which represent all of its possible paths in its own graph
from its start position to its end position, all such edges being labelled
by the duration (and cost) of the move along the edge – which controls
the agents’ speeds so that they can synchronize their formation ren-
dezvous point. The set of all possible collaborative paths is

(1) (2)

(1) (2)
g g

s s

v v
v v

Π ×Π
, where sections of each agent’s path can correspond to common for-
mation moves. Note that both agents’ paths separately extracted from a
given collaborative path do not need to have the same length, but they
can contain common edges where the agents move in formation. The
objective of the collaborative common formation path planning problem
is to find a path for each agent with common formation sections where
they can move side by side. The global cost of the pair of paths for the
two agents is split into two parts: (1) cost of individual sections where
no formation moves are possible, corresponding to the sum of each
agent’s individual moves; (2) cost of common sections where both
agents are moving together in formation, corresponding to the forma-
tion cost c⊗ . Thus, the cost function of a pair of collaborative formation
paths () (1) (2)

(1) (2)
(1) (2), g g

s s

v v
v v

σ σ ∈Π ×Π is defined as ()(1) (2), =C σ σ

() () ()

()
(1) (1)

(2) (2) (1) (2) (1) (1) (2) (2)

(1) (1)

: , , =
e

e e e e e

c e
σ

σ δ δ⊗
∈

∃ ∈ ∈

′ ′

+∑




agent (1) s edges not in formation with agent (2) edges (in Figure 1)red

() () ()

()
(2) (2)

(1) (1) (1) (2) (1) (1) (2) (2)

(2) (2)

: , , =
e

e e e e e

c e
σ

σ δ δ⊗
∈

∃ ∈ ∈

′ ′

+∑




agent (2) s edges not in formation with agent (1) edges (in Figure 1)green

() () ()

()
(1) (1) (2) (2)

(1) (2) (1) (1) (2) (2)

(1) (2)

,
, , =

,
e e

e e e e

c e e
σ σ
δ δ⊗

⊗

∈ ∈
∈

′ ′

∑




agent (1) s edges and agent (2) edges in formation (in Figure 1)yellow

The collaborative formation path planning problem consists in finding
collaborative paths that minimize the global cost of the paths by tak-
ing account for common formation moves:

	
()

()
()(1) (2)

(1) (2)
(1) (2)

(1) (2)

,
,

g g

s s

v v
v v

min C
σ σ

σ σ
∈Π ×Π


	

Since graph edges are weighted by duration (and cost), the variables
of the minimization problem above are not only vertex positions but
also edge durations, which is required to synchronize the agents at
their formation rendezvous point.

Algorithms

Problem () consists in finding the agents’ paths in their graphs and
synchronizing them both temporally and spatially, which can be viewed
as a single path finding problem in a cross-product graph that aggre-
gates the positions of each agent. Figure 2 represents how agents’
positions are aggregated and tracked together within a single cross-
position vertex (depicted in yellow in the figure) that can lie at inter-
mediate positions respective to each agent’s graph. In fact, the figure
shows that it is not sufficient to synchronize each agent’s atomic move
on the vertices of their respective graphs: in order to make a formation
at t = 0.6, Agent 1 has to perform 1 atomic move whereas Agent 2
must execute 2 atomic moves. Therefore, we need to represent an
intermediate position for Agent 1 between its first and second vertices,
which coincides with Agent 2’s move through its second vertex. Thus,
Agent 1 has to control its speed in order to meet Agent 2 at the same
time point (t = 0.6 in the figure) at the rendezvous point. This example
shows that edges must contain duration information about which we
have to reason in order to temporally and spatially synchronize agents.

By casting the collaborative common path planning problem into a sin-
gle path planning problem, we can run an A* algorithm on the cross-
product graph. To this end, additional information must be embedded
in the nodes of the product graph in order for A* to expand the product
graph properly. Said differently, rules to expand the product graph on
nodes closed by A* need specific information explained below.

Optimal algorithm

The optimal algorithm reasons in the combined spatial and temporal
spaces without decoupling spatial and temporal synchronization
logics of the agents. To this end, we define the following cross-
product graph.

Cross-product labelled graph

The coupled cross-product labelled graph is defined as ()= ,V E⊗ ⊗ ⊗
with:

•	 [] [](1) (2)= 0;1 0;1V E E⊗ × × × , such that ()(1) (1) (2) (2)= , , ,v e e Vα α⊗ ⊗∈
represents the ()iα percentage of completion of each agent i’s
move along edge ()ie in its own graph. We recall that (1)e and

(2)e are each labelled with the cost and duration of the move of
the agent in its own graph, meaning that they each take the form

t = 0.52
α(2) =0.6

α(1) =0.7

t = 0.0

t = 0.4

t = 0.6

t = 0.9

t = 0.1

t = 0.52

Figure 2 – Cross-product graph: at t = 0.52, Agent 1 is at the (1)α portion of
the edge linking the first and second vertices of its graph, while Agent 2 is at
the (2)α portion of the edge linking the second and third vertices of its graph.

Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 4

of a tuple in () ()i iV V + +× × ×  . It is especially important for
the understanding of the next paragraphs to note that there can
exist in each agent’s graph many different edges with the same
incoming vertex and outgoing vertex but with different durations
(and costs).

•	 4E V V⊗ ⊗ ⊗
+⊆ × × , such that ()(1) (1) (2) (2)

1 2= , , , , ,e v v c d c d⊗ ⊗ ⊗
represents a labelled cross-product transition of both agents
from a cross-product position 1v⊗ to another cross-product
position 2v⊗ , with labels ()(1) (1) (2) (2), , ,c d c d , representing the
cost and the duration of the original individual graph edges that
are being travelled along by each agent. These labels are need-
ed when constructing the edges outgoing from a given cross-
product position, in order to know how much time and cost
remain to be consumed and paid along the current edge of each
agent’s original graph, in case the cross-product position may
correspond to an intermediate position of one of the agents in
its own graph (meaning that the agent has not yet finished trav-
elling along its current edge in its own graph when transitioning
to another cross-product vertex).

For instance, consider Figure 2 and assume that Agent 1
(resp., Agent 2)’s path as it appears from left to right in this fig-
ure is noted as (1)σ (resp. (2)σ). The current positions of both
agents depicted in Figure 2 is encoded in a product graph vertex

() ()()(1) (2)
1 = 1 ,0.7, 2 ,0.6v σ σ⊗ , which means that Agent 1 (resp.

Agent 2) is at 70% (resp., 60%) of completion in transitioning to the
in-vertex to the out-vertex of its first (resp., second) transition along
its path. Now, assume that the next event corresponds to Agents 1
and 2 reaching the out-vertices of their current respective edges
(resp., ()(1) 1σ and ()(2) 2σ) simultaneously at t = 0.6, which hap-
pens to be a rendezvous point, the next cross-product vertex will be

() ()()(1) (2)
2 = 2 ,0, 3 ,0v σ σ⊗ 1 and the corresponding transition will

be ()(1) (2)
1 2= , , ,0.5, ,0.2e v v c c⊗ ⊗ ⊗ , since Agent 1 (resp., Agent 2)

was traveling along its current edge for = 0.6 0.1 = 0.5d − (resp.,
= 0.6 0.4 = 0.2d −) time units.

Graph expansion

Once the cross-product graph is constructed, we can run a single-agent
path planning algorithm like A* on it, then retrieve the individual moves
from the cross-product solution plan. Thus, we first need to instantiate
the cross-product graph: we generate it lazily from the starting cross-
product vertex – which is simply the pair of starting vertices of each
agent – and expand it on-demand (e.g., when A* looks at successor
vertices of the current closed vertex) by constructing outgoing cross-
product edges from a given current cross-product vertex. Algorithm 1
formalizes this lazy cross-product graph expansion.

The algorithm tests different cases corresponding to whether each
agent i is located at a vertex of its own graph (i.e., () = 1iα), where
a decision regarding the next successor vertex to target has to be
taken, or if it is located between two successive vertices of its own
graph (i.e., ()0 < < 1iα), where it can only continue to execute the
current move to the next targeted successor vertex. When an agent
is at a decision point, we iterate over the edges of its own graph

1	 In this example () ()(1) (2)2 = 3σ σ because the agents travel in formation from
their previous vertices, and their graphs are the same. However, note that in
general their graphs do not need to be the same, so their edges can be different
even in formation.

whose incoming vertex is equal to the outgoing vertex of the previ-
ously executed edge (e.g., Lines 3 and 19). Then, we compare the
remaining durations of the edges of each agent in their own graphs
(e.g., Lines 4 and 20), in order to know which agent will reach its next
targeted successor vertex first and update the completion ratio of the
other agent – which may not reach its next targeted successor vertex
in the same move – accordingly (e.g., Lines 7, 23 and 27). Note that
the case () () () ()(1) (1) (1) (2) (2) (2)1 < 1d e d eα α− ⋅ − ⋅ is impossible,
since at least one agent reaches its next targeted successor vertex at
each graph expansion. When both agents are at a decision point (i.e.,
Line 2) we check whether a formation is feasible, in which case we
add cross-product edges corresponding to the two agents traveling
along the same common path with appropriate formation costs and
durations (Lines 13 to 17).

Conditions on initial and goal vertices

Special attention specific to the CCPP problem must be paid to the
initial and goal vertices. If we do not allow an agent that has reached
its goal vertex to wait for the other agent to reach its own goal, it sig-
nificantly reduces the chance of finding a solution because it means
that we would force the two agents to reach their goal vertices at
the same time. However, such a condition is not desired in practice,
so we allow each agent to wait for the other agent at its goal verti-
ces by adding in its own graph self-transitions from its goal vertices
labelled with the durations of all of the edges of the other agent. Doing
so, whatever the location of the other agent in its own graph, the
agent at the goal will always transit again to its goal for each atomic
move of the other agent. Since this "goal holding" property might be
undesirable in very specific applications, we activate or deactivate it
according to a test function named can_hold. This logic, which
is implemented in Lines 4 to 6 of Algorithm 2, is also valid for initial
vertices since holding the initial vertex of an agent while the other
has begun to move increases the chance of finding a (spatial and
temporal) synchronization point where both agents can begin to move
in formation. Indeed, meeting at a given rendezvous point at a given
time can be achieved by controlling each agent’s edge speed or initial
vertex starting time. Even if better formation plans can be found by
allowing one agent to hold its initial vertex for an amount of time dic-
tated by the other agent’s initial transition duration, it is of course less
optimal than an approach that would allow a free continuous holding
duration irrespective of the other agent’s initial transition duration.
However, such an approach would be much harder computationally,
since it would require continuous optimization variables to be consid-
ered, whereas our approach allows us to keep reasoning about only
discrete optimization variables.

Moreover, some applications might require the two agents to start
at predefined time points, or, in other words, that the difference of
their starting times be constrained to a predefined value. This is, for
instance, the case of two flights that might want to fly somewhere in
formation in order to save fuel burn given the current day’s weather
conditions but whose takeoff times are set several months in advance
and cannot be significantly changed at the last minute. To do this, we
test for a condition must_shift that, if true, adds a predefined
amount of time to the duration of the first transition of each agent from
their initial vertices (see Lines 7 to 9 of Algorithm 2). Note that this
option is incompatible with the "holding" one, since an agent cannot
start within a predefined time interval from the other agent’s start
while holding its starting vertex.

Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 5

Data: (1) (1) (2) (2)= (, , ,)v e e Vα α⊗ ⊗∈ : cross product vertex
Result: []

e E
e ⊗ ⊗
⊗

∈
: list of cross product edges outgoing from ()(1) (1) (2) (2), , ,e eα α

successors ← list()
if (1) = 1α and (2) = 1α then

for ()(1) (2) (1) (2) (1) (1), :e e E E e e∈ × =.out() .in() and (2) (2)e e=.out() .in() do
if () ()(1) (1) (2) (2)<d e d e then

() () ()
()

(1) (1)

(2) (2)

(1) (1) (2) (2) d ec c e c e
d e

← + ⋅ ;

()(1) (1)d d e← ;

(1) 1α ← ;
(1) (1)

(2) (2)

(2) ()
()

d e
d e

α ← ;

else
Symmetry of Lines 5 to 7

v V⊗ ⊗← .add((1) (1) (2) (2), , ,e eα α);
e E⊗ ⊗← .add(, , ,v v c d⊗ ⊗);
successors.add(e ⊗);
if can_make_formation(() ()1 2,e e) then

() ()()1 2,c c e e⊗← ; () ()()1 2,d d e e⊗← ;
v V⊗ ⊗← .add((1) (2),1, ,1e e);
e E⊗ ⊗← .add(, , ,v v c d⊗ ⊗);
successors.add(e ⊗);

else if (1) = 1α and (2) 1α < then
for (1) (1) (1) (1): =e E e e∈ .out() .in() do

if () ()(2) (2) (2) (1) (1)1 < ()d e d eα− ⋅

() () ()
() ()

(2) (2)

(1) (1)

(2) (1) (1) (2) (2)1 d ec c e c e
d e

α  
← − ⋅ ⋅ + 

 
() ()(2) (2) (2)1d d eα← − ⋅

() ()
()

(2) (2) (2)

(1) (1)

(1) 1 d e
d e
αα − ⋅

← ; (2) 1α ←

else

() () ()
()

(1) (1)

(2) (2)

(1) (1) (2) (2) d ec c e c e
d e

← + ⋅

()(1) (1)d d e←

(1) 1α ← ;
(1) (1)

(2) (2)

(2) (2) ()
()

d e
d e

α α← +

v V⊗ ⊗← .add((1) (1) (2) (2), , ,e eα α);

e E⊗ ⊗← .add(, , ,v v c d⊗ ⊗);
successors.add(e ⊗);

else if (1) < 1α and (2) = 1α then
Symmetry of Lines 19 to 27

return successors;

Algorithm 1 – Cross-product graph expansion

1
2
3
4

5

6

7

8
9

10
11
12
13
14
15
16
17

18
19
20

21

22

23

24

25

26

27

28

29
30

31
32

33

Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 6

Global algorithm

The optimal CCPP solving procedure is presented in Algorithm 3. It
proceeds in three logical steps:

1.	Establish initial and goal conditions using Algorithm 3
(Line 1);

2.	 Construct the cross-product initial and goal vertices and run-
ning A* by lazily expanding the cross-product graph on closed
vertices using Algorithm 2 (Lines 2 to 4);

3.	 Extract the individual plans of each agent from the cross-product
plan by looking at cross-product vertices whose completion ra-
tios are equal to 1, meaning that the corresponding agent is
located at a decision vertex but not in-between two successive
vertices of its own graph (Lines 5 to 9).

Decoupled spatial/temporal algorithm

The complexity of the optimal algorithm lies in the coupled spatio-
temporal space: in order to synchronize the agents at potential
formation points, both spatially and temporally, it has to memorize
cross-product vertices containing the agents' original graph verti-
ces and completion ratios of traveling along these edges. By noting
as ()iD an upper bound on the number of different durations of each
travel between two successive vertices of Agent i’s own graph (i.e.,
the maximum number of edges with the same given incoming and

outgoing vertices) the potential number of cross-product vertices
explored by A* is 2 2(1) (2) (2) (1) (1) (2) (2) (1)=E D E D V D V D⋅ ⋅ ⋅ ⋅ ⋅ ⋅ .
In the case where both agents share the same graph and are identi-
cal (implying same possible edge durations) it amounts to visiting
at most 4 2V D⋅ vertices, which is intractable even for very small
instances.

A simple idea consists in decoupling the problems of synchronizing
the agents spatially and temporally. First, we aim at finding a pair of
vertices for each agent where they can begin a formation by dis-
carding all temporal information on edge durations. It is achieved
by running lazy A* with a vertex expansion procedure presented in
Algorithm 4, which is composed of two phases: (1) filter out dura-
tions from each agent’s graph edges by replacing each set of edges
with the same incoming and outgoing vertices by a single edge with-
out duration and whose cost is averaged on-the-fly over all of the
costs of the replaced edges (Lines 1 to 10); (2) generate successor
cross-product vertices from the filtered edges while checking for the
possibility of beginning a formation, in which case the formation cost
is appropriately set (Lines 11 to 15). Crucially, a self-transition from
each agent’s current vertex is added, in order to simulate the fact that,
in reality, an agent might not have reached its next successor vertex
when the other has indeed reached its own next vertex (Line 10).
This trick actually allows the agents to reach a common formation
point even if their individual numbers of atomic moves to reach it are
different (see Figure 2).

Data: { }() , 1,2i
sv i∈ : Agent i’s starting vertex; { }() , 1,2i

gv i∈ : Agent i’s goal vertex
for { }1,2i∈ do

j i← mod 2+1;
for { }() () (),i i i

s gv v v∈ do
if can_hold(()iv) then

for () ()j je E∈ do
()iE .add(() () () ()(), ,0, j ji iv v d e);

if must_shift(()i
sv) then

for () () () (): =i i i i
se E e v∈ .in()

[] []() () () () ()i i i i i
sd e d e v← +shift();

Algorithm 2 – Make initial and goal conditions

1
2
3
4
5
6

7
8
9

Data: ()i
sv : Agent i’s start node; ()i

gv : Agent i’s goal node; ()() () ()= ,i i iV E : Agent i’s move graph; :c E⊗ ⊗
+→ : cross-product cost

function; :h V V⊗ ⊗ ⊗
+× → : cross-product heuristic function

Result: { }() , 1,2i iπ ∈ : optimal path from ()i
sv to ()i

gv
make_initial_and_goal_conditions();

(1) (1) (2) (2)((,),1,(,),1)s s s s sv v v v v⊗ ← ;
(1) (1) (2) (2)((,),1,(,),1)g g g g gv v v v v⊗ ← ;

π ⊗ ← lazy_astar(, ,s gv v h⊗ ⊗ ⊗) using cross_product_graph_expansion;
(1)π ← ; list(); (2)π ← list();

for e π⊗ ⊗∈ do
(1) (1) (2) (2)(, , ,)out out out oute e eα α ⊗← .out();

if (1) = 1outα then (1)π .add((1)
oute);

if (2) = 1outα then (2)π .add((2)
oute);

return ()(1) (2),π π ;

Algorithm 3 – Optimal CCPP algorithm

1
2
3
4
5
6
7
8
9

10

Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 7

The second phase consists in planning for the agents’ coordination
in the temporal space only by running lazy A* with a temporal graph
expansion schema, which constrains the spatial vertex transitions to
the plans found during the first spatial planning phase, as formalized
in Algorithm 5. Thus, the cross-product vertex is composed of the
pair of indices of the moves in the spatial plans currently executed by
the agents, which is sufficient to track each agent’s plan execution
and to obtain the spatial edge corresponding to the current plan indi-
ces (Lines 2 to 6). Once this edge has been extracted, we obtain all

of the original time-labelled edges with the same incoming and outgo-
ing vertices, in order to retrieve timing information that was lost dur-
ing the first spatial synchronization phase (Lines 7 to 9). Finally, we
generate successor cross-product vertices from the reconstructed
time-labelled edges while checking for the possibility of beginning
a formation, in which case the formation cost is appropriately set
(Lines 10 to 14). Note that, at this stage, time labels are part of the
reconstructed vertices so we can check whether it is possible for the
two agents to simultaneously reach a potential formation vertex.

Data: (1) (2) (1) (2)= (,)v v v V V⊗ ∈ × : cross-product vertex without time info
Result:

()2(1) (2)
[]

e V V
e

⊗
+

⊗

∈ × ×
: list of cross-product edges outgoing from v⊗

for { }1,2i∈ do
()iE ← list(); n ← map();

for () () () (): =i i i ie E e v∈ .in() do
if () (),i ie E e e∀ ∈ ≠ .out() .out() then

() () () () (), , ()i i i i iE e e c e .add(.in() .out()) ;
() 1in e  ← .out() ;

else
()() ()i ic e ←

() ()()() () () () ()
()

1
1

i i i i i
i

n e c e c e
n e

 ⋅ +  + 
.out()

.out()
;

() () 1i in e n e   ← +   .out() .out() ;

() ()() , ,0i i iE v v .add();

successors ← list();
for (1) (1)e E∈  and (2) (2)e E∈  do

successors .add(() () () ()() () ()()1 2 1 1 2 2, ,e e c e c e+     );
if can_make_formation((1) (2),e e ) then

successors .add(() () () ()()1 2 1 2, , ,e e c e e⊗
   );

return successors

Algorithm 4 – Spatial graph expansion

1
2
3
4
5
6

7
8

9

10

11
12
13
14
15
16

Data: �{ } { }
()

1,2
i

iπ ∈ : Agent i’s spatial plan w/o timing information; ()1 2= ,v k k⊗ : cross-product vertex containing indexes of current
spatial vertices in Agents 1 and 2’s plans

for { }1,2i∈ do
[]() ()i i

iv kπ←  ;
if () 1i

ik π≠ − .length() then
[]() () 1i i

iv kπ← + ;
else

() ()i iv v← ;
()iE ← list();

for () () () (): =i i i ie E e v∈ .in() and () ()=i ie v.out() do
()()i iE e .add();

successors ← list();
for (1) (1)e E∈  and (2) (2)e E∈  do

successors .add(() () () ()() () ()()1 2 1 1 2 2, ,e e c e c e+     );
if can_make_formation((1) (2),e e ) then

successors .add(() () () ()()1 2 1 2, , ,e e c e e⊗
   );

return successors

Algorithm 5 – Temporal graph expansion

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15

Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 8

The global decoupled spatio-temporal procedure is presented in
Algorithm 6. The pseudo-code is quite obvious given the previous
explanations of the successive spatial and temporal synchronization
phases. Whereas this decoupled schema certainly does not bring
optimal solutions to the CCPP problem, it allows us to solve large
problems with satisfactory quality in a very small fraction of the time
spent by the optimal coupled algorithm.

Heuristics

Given that our algorithms rely on A*, we need a heuristic function
to guide the search in the cross-product graph. Designing a generic
admissible and informative heuristic is especially challenging because
the cost function changes when the agents move in formation and we
do not know in advance when and where they will begin or end a for-
mation pattern. A brute-force method would consist in iterating over
all possible pairs of each agent’s vertices representing joining and
breaking formation points, in order to ease heuristic estimate com-
putations. However, we would spend too much time iterating over
too numerous pairs, which would ruin the benefit of using heuristic
functions.

Admissible heuristic

A simple admissible but non-informative heuristic estimate consists
in summing individual heuristic estimates for each agent in their own
graphs using formation costs c⊗ , even if they do not travel in formation.

Any admissible heuristic for single-agent path planning (e.g., Euclidean
distance, Manhattan distance, etc.) can be used to calculate the indi-
vidual heuristic estimates but considering formation costs instead of
standard single-agent costs (i.e., like in the case of agents travelling
in formation from their starting to ending locations). This allows us to
obviate the difficult question of when and where they join together or
break the formation, but we lose the crucial information that their indi-
vidual moving costs are actually generally much higher when they do
not travel in formation. Formally, we note as () () ():i i ih V V +× → a
heuristic function defined on Agent i’s vertices in its own graph, such
that () ()() () () , () (), ,i i i i i i

A B A Bh v v C v v⊗ where (), () (),i i i
A BC v v⊗ is Agent i’s

contribution to the duet cost-to-go function if it travels in formation with
the other agent from the starting vertex ()i

Av to the target vertex ()i
Bv .

Said differently, ()ih is computed with edge costs assumed to be all
equal to Agent i’s contribution to c⊗ , even if it does not travel in forma-
tion. Therefore, an admissible heuristic is (1) (2)=admh h h⊗ + .

Informative heuristic

In order to use the important information that the cost function is
higher when the agents do not move in formation, we try to approxi-
mately guess with simple geometric reasoning where the agents
will make a formation and further break it. This simple geometric
method, depicted in Figure 3 and formalized in Algorithm 7, assumes
the vertices of the agents’ own graphs to be elements of a Euclid-
ean space. Given a pair of starting vertices (1) (2)(,)A Av v and target
vertices (1) (2)(,)B Bv v we compute their respective barycenters Av

Data: � ()i
sv : Agent i’s start node; ()i

gv : Agent i’s goal node; ()() () ()= ,i i iV E : Agent i’s move graph; :c E⊗ ⊗
+→ : cross-product cost

function; :h V V⊗ ⊗ ⊗
+× → : cross-product heuristic function

Result: { }() , 1,2i iπ ∈ : optimal path from ()i
sv to ()i

gv
make_initial_and_goal_conditions();

()(1) (2),s s sv v v⊗ ←
()(1) (2),g g gv v v⊗ ←

spatialπ ⊗ ← lazy_astar(, ,s gv v h⊗ ⊗ ⊗) using spatial_graph_expansion;
()

{1,2}{ }i
iπ ∈ ← extract_individual_plans(spatialπ ⊗);
()0,0sv⊗ ← ;
()(1) (2)1, 1gv π π⊗ ← − −  .length() .length() ;

temporalπ ⊗ ← lazy_astar(, ,s gv v h⊗ ⊗ ⊗
 ) using temporal_graph_expansion(()

{1,2}{ }i
iπ ∈);

return extract_individual_plans(temporalπ ⊗);

Data: ()
{1,2}{v }i

A i∈ : Agent i’s starting point (vector); ()
{1,2}{v }i

B i∈ : Agent i’s target point (vector); > 0ε : spatial precision between pos-
sible joining or breaking points
Result: Heuristic estimate of the CCPP problem from joint starting point to joint target point

()(1) (2)1
2v v vA A A← + ; ()(1) (2)1

2v v vB B B← + ;

{ }v v: B AN argmin n n ε
−

+← ∈    ;
for 0i ← to N do

()v v v vi
i s B AN← + −    ;

()(1) (2) (1) (2)(v , v), (v , v)A A B Bh⊗ ← () (){ }(1) (1) (1) (2) (2) (2)
0 /2 v v v v v v v v v vi N N i i i A N i B i A N i Bmin ω ω ω⊗

− − −− + − + − + − + −      ;

return ()(1) (2) (1) (2)(v , v), (v , v)A A B Bh⊗ ;

Algorithm 6 – Spatio-temporal decoupled CCPP

Algorithm 7 – CCPP heuristic on Euclidean space

1
2
3
4
5
6
7
8
9

1

2
3
4

5

6

Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 9

and Bv (Line 1) and assume that the agents will travel in formation
somewhere along the segment joining these barycenters – which is
obviously not guaranteed, but hopefully close to the optimal forma-
tion segment, preventing us from proving the admissibility of this
heuristic estimate. Then we iterate over possible joining and breaking
points along the median segment [;]A Bv v  , assumed to be symmet-
ric for simplicity (Lines 2 to 4). Finally (Line 5), we search for the
minimum estimate over these possible joining/breaking patterns of
the sum of the individual contributions of the agents when not in for-
mation from their initial starting vertices to the joining point and from
the breaking point to their target vertices (blue and red segments in
Figure 3), and of the heuristic formation cost-to-go from the joining
point to the breaking point (violet segment in Figure 3).

Experiments

Navigation grids

In this section we propose to experimentally compare the different
variants of our CCPP solving algorithms on navigation grids that are
Euclidean spaces, so that we can test our informative geometric heu-
ristic. As shown in Figure 1, we experimented with various random
grids having various sizes, obstacle densities and formation moving
costs. Table 2, whose caption defines shortcut names for the tested
variants, summarizes the results. We implemented the algorithms in
pure Python and run the tests on Intel’s core i7 with 2.80 GHz CPUs
and 16 Go of RAM (the tests used at most 1.5 Go of RAM). For each

(1)
Av

Av

(2)
Av

(1)
Bv

(2)
Bv

Bv

iv

N iv −

(1)
,A iu

(1)
,B iu

(2)
,A iu

(2)
,B iu

iu⊗

Figure 3 – Heuristic estimate of the CCPP problem in Euclidean spaces from a
joint position (1) (2)= (,)A A Av v v⊗ to (1) (2)= (,)B B Bv v v⊗ : (), =A Bh v v⊗ ⊗ ⊗

() (){ }(1) (1) (1) (2) (2) (2)
0 /2 , , , ,i N i A i B i A i B imin u u u u uω ω ω⊗ ⊗ + + + + , where ω 's

represent speed-dependent moving costs per length unit as functions of
duration-labelled edges

(a) Small sparse grid (b) Large dense grid

Figure 4 – Formation path planning experimented on randomly generated grids with various sizes and obstacle densities. Individual optimal agents’ paths
regardless of the CCPP problem are in red and blue, while CCPP agent paths are in yellow.

PATHS TEAM COST NUMBER OF EXPLORED A* NODES CPU TIME (seconds)
Problem CA CI DA DI CA CI DA DI CA CI DA DI

NG-5-5-75 1.8 2.18 1.8 1.8 22525 11577 422 296 2.67 0.888 0.0377 0.0328
NG-5-5-50 1.1 1.1 1.1 1.1 6819 2456 164 86 0.319 0.0549 0.0169 0.013

NG-10-10-75 2.94 2.99 4.4 2.99 582997 33464 2669 784 85.5 1.92 0.658 0.263
NG-10-10-50 3.1 3.2 3.43 3.5 512555 159521 2107 1620 77 16 0.6 0.47
NG-20-20-75 — 7.03 9.7 8.23 — 757991 17775 8004 — 99.8 6.35 3.59
NG-20-20-50 — 7.13 8.05 7.58 — 1139752 11859 4066 — 151 11.2 5.83
NG-40-40-75 — — 17 16.7 — — 47172 14167 — — 153 49.8
NG-40-40-50 — — 16.9 14.3 — — 21410 18504 — — 184 98.7
NG-80-80-75 — — — 34.1 — — — 97244 — — — 732
NG-80-80-50 — — — 40.6 — — — 110855 — — — 1140

Table 1 – Navigation grid experiments: comparison of solution path team costs, numbers of nodes explored by A* in the cross-product graph and CPU times,
for the coupling algorithm using the admissible generic heuristic (CA) or the informative geometric one (CI), and similarly for the decoupling algorithm (DA and
DI). Problems are noted as NG-X-Y-P, where X and Y stand for the x and y dimensions of the grid, and P represents the cost reduction percentage of edges where
the two agents move in formation side by side, in comparison with non-formation edges (i.e., (1) (2)= (1) /100 ()c P c c⊗ − × +).

Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 10

algorithm we time out the search at 3 minutes of computation. Note
that the only optimal algorithm is CA, i.e., the coupling algorithm
equipped with the admissible heuristic.

Coupling algorithm vs. decoupling algorithm

The coupling algorithms can only solve the first problems, since they
explore significantly more nodes during A* graph search than the
decoupling algorithms do: up to 280 times more for the same heuris-
tics. The best version of the coupling algorithm times out after the 7th
problem. The decoupling algorithms’ solution quality is at most at 12%
of the optimal solution, even finding optimal ones on small problems.

Admissible heuristic vs. informative heuristic

As expected, the informative heuristic allows the coupling or decou-
pling algorithms to solve more problems, since it provides more
accurate estimates of the team cost-to-go. However, it is not admis-
sible, which degrades the solution quality of the coupling algorithm
in comparison with the admissible heuristic. However, interestingly,
we observe the inverse behavior for the decoupling algorithm, which
seems to indicate that the negative impact on the solution quality of
decoupling is higher than when using a non-admissible heuristic.

Impact of formation edge cost reduction

Since higher cost reductions tend to incentivize agents more to make
formations, we expect the CCPP problem to be more difficult to solve
with lower cost reductions, since more cross-product nodes should
be explored before finding potential joining points that can provide
some benefits. For reasons that we do not fully understand yet, this
is partially observed with the informative heuristic only. More nodes
are systematically explored by A* with 75% formation cost reduction
using the admissible heuristic for both algorithms.

Formation Flight

We ran the DI algorithm, i.e., the only scalable one, on formation flight
problems for hundreds of flights constrained to fly over official airway
graphs published by aviation authorities, which contain more than
30000 of vertices at different altitudes. Each aircraft is assigned a
route, which is defined by a pair of departure and destination airports,
but the flight paths have to be optimized in the 4D space composed
of the aircraft’s 3D waypoint positions and the times when it flies
through each waypoint. In addition to optimizing the flight routes for a
given pair of leader-follower aircraft, we must choose the best leader-
follower pairs among all of the possible pairs. To this end, we note as

N +∈ the number of aircraft to pair and as []21; N⊆ the possible
leader-follower pairs for which the CCPP problem returns a feasible
solution. For []1;i N∈ , we note as []{ }() = 1; , (,)F i j N i j∈ ∈ 
the set of possible followers that can pair with i. Symmetrically, for
all []1;j N∈ , []{ }() = 1; , (,)L j i N i j∈ ∈  is the set of possible
leaders that can pair with j. Finally, we note ijc the global cost of the
flights of a leader i and follower j flying in formation on a subset of
their routes (i.e., solution to the CCPP problem), and ic and jc the
costs of their solo flights if they had flown without pairing at some
point.

The solution is computed in two successive phases. First, we com-
pute all of the possible leader-follower formation routes by running
the CCPP algorithm on all possible pairs of aircraft, as well as all of
the solo flight routes. This phase allows us to compute the set 
of feasible formation flights, to fill in the formation costs ijc for all
(,)i j ∈ , and the solo flight costs ic for all []1;i N∈ . Second, we
compute the best possible pair assignments by running the following
integer linear program whose optimization variables are {0,1}ijf ∈ :

	 ()
(,)

: ij i j ij
i j

maximize f c c c
∈

+ −∑


	 (1)

	 []
()

: 1; , 1
F

ij
j i

subject to i N f
∈

∀ ∈ ∑


 	 (2)

	 []
()

1; , 1
L

ij
i j

j N f
∈

∀ ∈ ∑


 	 (3)

	 ()
()

, , 1
L

ij ki
k i

i j f f
∈

∀ ∈ + ∑


  	 (4)

	 ()
()

, , 1
F

ij jk
k j

i j f f
∈

∀ ∈ + ∑


  	 (5)

Decision variables ijf are equal to 1 whenever Leader i is paired with
Follower j. Constraint 2 (resp. 3) means that each possible leader i
(resp. follower j) can be paired with a single follower j (resp. leader i).
Constraint 4 (resp. 5) means that a given leader (resp. follower) can-
not be the follower (resp. leader) of another aircraft. The objective
function is to maximize the gain of flying in formations, i.e., the differ-
ence between the sum of individual solo flight costs i jc c+ and the
formation cost ijc whenever a formation ijf is selected. An excerpt
of the resulting formation flights over the Atlantic Ocean is shown in
Figure 5. Note that aircraft have to fly though so-called North Atlantic
Tracks, which are very beneficial to formation flights since solo flights
take those tracks anyway.

Figure 5 – Formation Flight test bench: common formation paths are shown in solid red, solo (non-cooperative) paths appear in dashed green, the airway graph
is shown in solid gray, and airports appear as blue dots.

Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 11

Discussion

Our experimental results show that only the decoupling algorithm
equipped with informative heuristics like the geometric one that we
proposed can reasonably scale. However, we also observed a loss in
quality, which can be of up to 12 % of the optimal team cost on some
benchmarks even if the loss is in general much lower. These results
encourage us to conduct further research on improving the decoupling
algorithm by trading a little computation time off for quality regaining.
Possible research directions would consist in alternatively iterating
between the spatial and temporal synchronization phases instead of a
single iteration that freezes the spatial phase independently from the
temporal phase’s solution constraints as we currently do.

Another important line of research would look at improving heuris-
tics: making the informative geometric heuristic admissible, as well
as designing a generic informative heuristic that differentiates the
costs of the pre- and post-formation paths of the agent from the for-
mation common path – like our geometric heuristic, but in general
state spaces that are not necessarily Euclidean. Finally, extension of
the CCPP problem to continuous edge duration spaces would require
the mixing of A* search in the spatial space, followed by scheduling
techniques in the temporal space to control the speed of frozen spatial
moves as a true continuum of values instead of continuous values
chosen in a discrete set [14]. However, note that such settings are
not always desirable, especially not in formation flight, as explained
in the introduction 

References

[1]	 Y. Chen, J. Yu, X. Su, G. Luo - Path Planning for Multi-UAV Formation. Journal of Intelligent & Robotic Systems, 77(1):229-246, 2015.

[2]	 H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki, S. Thrun - Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, Pittsburgh, PA, 2005.

[3]	 B. Coltin, M. M. Veloso - Ridesharing with Passenger Transfers. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago,
IL, USA, September 14-18, 2014, pages 3278-3283. IEEE.

[4]	 L. Deng, X. Ma, J. J. Gu, Y. Li - Multi-Robot Dynamic Formation Path Planning with Improved Polyclonal Artificial Immune Algorithm. Control and
Intelligent Systems, 42, 2014.

[5]	 D. Ferguson, M. Likhachev, A. T. Stentz - A Guide to Heuristic-Based Path Planning. Proceedings of the International Workshop on Planning under
Uncertainty for Autonomous Systems, International Conference on Automated Planning and Scheduling (ICAPS), Pittsburgh, PA, 2005.

[6]	 M. Goldenberg, A. Felner, R. Stern, J. Schaeffer - A* Variants for Optimal Multi-Agent Pathfinding. D. Borrajo, A. Felner, R. E. Korf, M.
Likhachev, C. L. López, W. Ruml, N. R. Sturtevant, editors, Proceedings of the Fifth Annual Symposium on Combinatorial Search, SOCS 2012, Niagara
Falls, Ontario, Canada, July 19-21, 2012. AAAI Press.

[7]	 W. Guanghua, L. Deyi, G.Wenyan, J. Peng - Study on Formation Control of Multi-Robot Systems. 2013 Third International Conference on Intelligent
System Design and Engineering Applications, pages 1335-1339, 2013.

[8]	 Y. Hao, S. K. Agrawal - Planning and Control of UGV Formations in a Dynamic Environment: A Practical Framework with Experiments. Robotics Auton.
Syst., 51(2-3):101-110, 2005.

[9]	 P. E. Hart, N. J. Nilsson, B. Raphael - A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Systems Science and
Cybernetics, 4(2):100-107, 1968.

[10]	 P. E. Hart, N. J. Nilsson, B. Raphael - Correction to "a Formal Basis for the Heuristic Determination of Minimum Cost Paths". SIGART Newsletter,
37:28-29, 1972.

[11]	 W. Hönig, T. K. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian, S. Koenig - Multi-Agent Path Finding with Kinematic Constraints. Proceedings of
the Twenty-Sixth International Conference on Automated Planning and Scheduling, ICAPS 2016, London, UK, June 12-17, 2016., pages 477-485, 2016.

[12]	 J. Hrncir, M. Jakob - Generalised Time-Dependent Graphs for Fully Multimodal Journey Planning. 16th International IEEE Conference on Intelligent
Transportation Systems, ITSC 2013, The Hague, The Netherlands, October 6-9, 2013, pages 2138-2145. IEEE.

[13]	 M. Katsev, J. Yu, S. M. LaValle - Efficient Formation Path Planning on Large Graphs.2013 IEEE International Conference on Robotics and Automation,
Karlsruhe, Germany, May 6-10, 2013, pages 3606-3611.

[14]	 E. Kelareva, K. Tierney, P. Kilby - CP Methods for Scheduling and Routing with Time-Dependent Task Costs.Springer, Berlin, Heidelberg, pp. 111-127 2013.

[15]	 D. Kirchler - Eff﻿icient Routing on Multi-Modal Transportation Networks. (Routage efficace sur réseaux de transport multimodaux). PhD thesis, École
Polytechnique, Palaiseau, France, 2013.

[16]	 S. M. Lavalle, J. J. Kuffner - Rapidly-Exploring Random Trees: Progress and Prospects. Algorithmic and Computational Robotics: New Directions,
pp. 293-308, 2000.

[17]	 R. L. Raffard, C. J. Tomlin, S. P. Boyd - Distributed Optimization for Cooperative Agents: Application to Formation Flight. 2004 43rd IEEE Conference
on Decision and Control (CDC) (IEEE Cat. No.04CH37601), volume 3, pages 2453-2459 Vol.3, 2004.

[18]	 M. Schreieck, H. Safetli, S. A. Siddiqui, C. Pflügler, M. Wiesche, H. Krcmar - A Matching Algorithm for Dynamic Ridesharing. Transportation
Research Procedia, 19:272-285, 2016.

[19]	 R. Silveira, E. P. e Silva Jr., L. P. Nedel - Managing Coherent Groups. Comp. Anim. Virt. Worlds, 19(3-4):295-305, 2008.

[20]	 R. Tiwari, A. Shukla, R. Kala - Intelligent Planning for Mobile Robotics: Algorithmic Approaches. Information Science Reference, 2012.

[21]	 M. Van Hellenberg Hubar - Multiple-Phase Trajectory Optimization for Formation Flight in Civil Aviation. 2016.

[22]	 J. Xu, S. A. Ning, G. Bower, I. Kroo - Aircraft Route Optimization for Formation Flight. Journal of Aircraft, 51, 2014.

[23]	 J. Yu, S. M. LaValle - Optimal Multirobot Path Planning on Graphs: Complete Algorithms and Effective Heuristics. IEEE Transactions on Robotics,
32(5):1163-1177, 2016.

Issue 15 - September 2020 - Collaborative Common Path Planning in Large Graphs
	 AL15-04	 12

AUTHORS

Florent Teichteil-Koenigsbuch graduated in 2002 from
the French aerospace engineering school SUPAERO. He
then obtained a PhD in Artificial Intelligence from the Uni-
versity of Toulouse in 2005. After having worked at
ONERA as a research scientist in Robotics and Artificial

Intelligence from 2005 to 2015, he moved to the Airbus Central Tech-
nology Office where has been working as a data scientist and re-
search project leader. He has published several conference and jour-
nal papers on AI decision making and autonomous robotics.

Guillaume Poveda has been an AI research engineer in
Airbus R&T since 2018. He graduated from ISAE-
SUPAERO in 2016 with a Master’s degree in engineering
along with a Master’s degree in operational research.
Since then, Guillaume has been working on optimization

topics for aerospace. When he’s not in front of his computer, Guillaume
is on his bike seat or somewhere in the Pyrénées.

