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This paper studies two-agent path planning algorithms in graphs, where the two 
agents are assigned independent initial and goal states but are incentivized to 

share some parts of their travel glued together by scaling down the duet cost function 
when they move in formation. Applications range from ride sharing to formation 
flights. After presenting an optimal but unscalable algorithm, we propose a decoupled 
approach that separates spatial and temporal reasoning by first geometrically finding 
formation and breaking nodes in the graph then temporally synchronizing the agents 
on the formation node by adapting their speeds along their paths in the graph. 
We also introduce an original heuristic function, which accounts for the potential 
formation paths in the graph and that is used to guide A* search on a cross-product 
graph representing the coordinated moves of the agents. We finally experiment our 
framework and compare its variants on grid-like and aircraft formation flight problems.
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Introduction

Path planning has a long history of research dating back to the early 
days of Artificial Intelligence. Many variants have been studied, from 
continuous motion planning [2] to discrete optimization in graphs [5] 
including sampling approaches [16], investigating both single-agent 
[9] and multi-agent [23] settings. Multi-agent frameworks have mainly 
looked at optimizing trajectories for a set of agents while avoiding col-
lisions [13][11], or at coordinating the trajectories of a set of agents 
to make them accomplish a common group objective; e.g., building 
formation patterns [7][4][1]. A specific case consists in incentiviz-
ing two or more agents to execute paths that share common moves; 
i.e., moves with the same current and next positions simultaneously, 
by reasoning about a cost function, which is lower when the agents 
move in formation side by side than when they follow different routes. 
In this paper we refer to this problem as "Collaborative Common Path 
Planning" (CCPP), depicted in Figure 1.

Applications of CCPP range from ride sharing planning, where two 
or more traveling people save money if they share the same vehicle 
along a common portion of their routes, to freight dispatch and rout-
ing where operational costs can be significantly reduced by transiting 
goods via intermediate common hubs, including comprehension of 
behaviors observed in nature, such as formation flights of migratory 
birds. Actual research works on CCPP, which have mainly originated 
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Figure 1 – Collaborative common paths example. Agent 1 (resp. 2)'s path 
duration is 1.7 (resp. 2.0). The agents move together in formation from 
t = 0.6 where they meet at the same navigation point until t = 1.4 where they 
break the formation. The global cost of their paths is 12.25.
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from this latter example to the best of our knowledge [17][22][21], 
have recently studied how aircraft routes can be planned so that two 
given aircraft whose geodesic routes from their departure airports 
to their destination airports are spatially close can fly one behind the 
other along a common portion of their flight routes to save global fuel 
burn. Indeed, the lift of the follower aircraft can be increased if it flies 
in the aerodynamic vortex created by the leader aircraft wings, allow-
ing it to reduce the thrust and thus reduce fuel burn. Some works also 
studied leader-follower path planning for mobile robots [4], but as 
CCPP for aircraft; all of these works assume the vehicles to be mov-
ing in continuous spaces using geometrical equations.

However, in reality, aircraft routes are rather defined over worldwide 
navigation graphs. The other aforementioned applications of CCPP 
also involve moving in discrete graphs rather than in continuous 
spaces. In this paper we study what we believe to be the first attempt 
to solve the CCPP problem in graphs, also paying special attention to 
making our approach scalable. We assume two agents to be moving 
in their own graphs – which can potentially be the same – in order to 
minimize the overall cost of reaching their goal vertices for each of 
them, while having the opportunity to significantly cut down atomic 
moving costs when they travel along specific pairs of (Agent  1’s 
edge, Agent 2’s edge) at the same time. Figure 1 represents the spe-
cific case where the graphs of each agent are identical. Importantly, 
our model assumes that the agents can control their speeds in order 
to synchronize at potential joining points from where they can move 
in formation, and that these speeds (or similarly, edge durations) 
can only be chosen from a discrete set – as is the case in aircraft 
formation flight, where edge cost evaluation is based on very time-
consuming aerodynamic models that prevent a continuum of edge 
duration values from being explored. We present an optimal but non-
scalable algorithm based on a transformation of the CCPP problem 
to a single agent path planning problem in the cross product of the 
agents’ graphs, which can then be solved by heuristic search meth-
ods like A*, as well as an efficient but suboptimal spatio-temporal 
decoupling algorithm. We also discuss generic but non informative 
heuristics and propose efficient geometric heuristics specific to 
graphs defined on Euclidean spaces. We finally experiment with our 
framework and compare its variants on grid-like problems, as well as 
world-scale formation-flight experiments using real aircraft models 
and world flight networks.

Related work

There is an abundant literature on multi-agent path planning that may 
take a close look at the research that we investigate in this paper. 
The graph search community has investigated for many years multi-
agent collision-free path planning [6]. Even though the objective of 
this research consists in minimizing the team cost-to-go summed 
over all of the agents, it sensibly differs from our work in the sense 
that avoiding collisions is the opposite objective to incentivizing the 
agents to meet and share common paths. Another line of research is 
aimed at planning dynamic formations for many moving agents [8], 
[19]. However, formations have a different meaning to ours: while 
we want the agents to move along the same graph edges to reduce 
their moving costs, like bird formation flights, those works dynami-
cally assign predefined geometrical formation patterns to a group of 
agents that do not necessarily travel along the same edges. Rideshar-
ing trip planning [18] is closer to our research, since the objective is 
to share vehicles among different passengers starting and ending at 
different locations. Since they share the same car, those passengers 

necessarily travel along the same edges on a portion of their trip. 
However, most works on ridesharing that we are aware of consider 
predefined meeting points, whereas we notably consider meeting 
points as part of the optimization problem itself. In ridesharing with 
passenger transfer optimization [3], the path from the passengers’ 
starting location to the meeting point and from the breaking point to 
their ending location is additionally optimized, but the meeting and 
breaking points are still predefined and fixed. Along the same line 
of research, multi-modal path planning [15][12] look at optimizing 
the global flow of passengers between different sources and targets, 
while partly travelling by using common transportation means. How-
ever, multi-modal stations that serve as meeting and breaking points 
are also fixed, as for the meeting and breaking time tables. To the best 
of our knowledge, aircraft formation flight optimization in continuous 
airspace [22][17][21] is the closest problem to ours. Indeed, the 
specificity of the cost function for this problem, which reduces the 
sum of agent costs when they travel along the same edges, makes 
this line of research quite singular in the multi-agent landscape. We 
believe that our work is one of the first to investigate formation flight 
planning in discrete structured airspaces.

Background

There has been a long history of research on path planning in graphs. 
Many single-agent algorithms are based on the famous A* algorithm 
[9][10] which allows for lazy and partial exploration of the agent’s 
navigation graph by guiding the search with heuristic estimates of the 
distance from the current node to the goal. Since we will use single-
agent path planning as a generic tool to solve CCPP via a transforma-
tion to single-agent path planning, we only present here the plain A* 
algorithm. The interested reader is invited to look at [20] for state-of-
the-art alternatives to A* for solving the single-agent transformation 
of our problem.

A* reasons about graph ( )= ,V E , which represents the feasible 
moves of the agent, with the edges being labelled by a cost func-
tion :c E +→ . This iteratively expands the vertices of the graph 
from the starting vertex sv V∈  up to reaching the goal vertex gv V∈  
via a minimum-cost path. Vertex expansion is guided by a heuris-
tic function 2:h V +→  which gives numerical under-estimates 
of the distance from the current vertex to the goal. In order for A* 
to be optimal, the heuristic function needs to be both admissible, 
i.e., by noting as ( )1 2,C v v∗  the optimal path between any distant 
vertices 1v V∈  and 2v V∈ , we have ( ) ( )1 2 1 2, ,h v v C v v∗ , and 
monotonic, i.e., for any edge e E∈  and vertex v V∈  we have 
( ) ( ) ( ).in(), .out(),h e v c e h e v+  by noting as .in()e  (resp. .out()e ) 

the incoming (resp., outgoing) vertex of e .

CCPP problem formulation

Let ( )( ) ( ) ( )= ,i i iV E  be the labeled graph of Agent {1,2}i∈ , which 
represents its possible moves in its own navigation network. Both 
agents’ navigation networks do not need to be identical, nor semanti-
cally equivalent. Graph vertices (resp., edge ends) stand for positions 
(resp., moves). Edges are equipped with label pairs ( ),c d  repre-
senting the cost and the duration of each move. Whereas standard 
single-agent path planning algorithms do not reason about moving 
duration, collaborative common path planning needs move duration 
information in order to temporally synchronize the two agents on ver-
tices where they can initiate a formation. We add exponent notations 
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( )i  to labels c and d, and edge flows in and out to indicate to which 
agent the concept is related.

We note as (1) (2)E E⊗ ⊂ ×  the set of edge pairs for both agents on 
which formations are possible. Elements of ⊗  must be temporally 
coherent, meaning that both agents’ moves must have the same dura-
tion when in formation; i.e., ( ) ( ) ( )(1) (2) (1) (1) (2) (2), , =e e d e d e⊗∀ ∈ . 
In Figure 1, the dashed yellow lines are elements of ⊗ . Depending 
on the application, other properties might be required typically that 
the start and end positions of the agents always be the same in the 
case where their navigation graphs are identical (e.g., vehicles mov-
ing in a same route network, as in Figure 1). It is also required that the 
two agents visit candidate formation vertices at the same time; i.e., 

( ) ( )(1) (1) (2) (2)=e eδ δ  for ( )(1) (2),e e ⊗∈ , where ( )( ) : ii Eδ +→  
represents the time when the incoming vertex of an edge is visited by 
Agent i in its own graph (implicitly dependent on the previously visited 
vertices from the start up to the edge’s incoming vertex).

Let 
( )

( )

i
g
i

s

v
v

Π  be the set of all possible timed sequences of Agenti i’s adja-
cent edges, which represent all of its possible paths in its own graph 
from its start position to its end position, all such edges being labelled 
by the duration (and cost) of the move along the edge – which controls 
the agents’ speeds so that they can synchronize their formation ren-
dezvous point. The set of all possible collaborative paths is 

(1) (2)

(1) (2)
g g

s s

v v
v v

Π ×Π
, where sections of each agent’s path can correspond to common for-
mation moves. Note that both agents’ paths separately extracted from a 
given collaborative path do not need to have the same length, but they 
can contain common edges where the agents move in formation. The 
objective of the collaborative common formation path planning problem 
is to find a path for each agent with common formation sections where 
they can move side by side. The global cost of the pair of paths for the 
two agents is split into two parts: (1) cost of individual sections where 
no formation moves are possible, corresponding to the sum of each 
agent’s individual moves; (2) cost of common sections where both 
agents are moving together in formation, corresponding to the forma-
tion cost c⊗ . Thus, the cost function of a pair of collaborative formation 
paths ( ) (1) (2)
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The collaborative formation path planning problem consists in finding 
collaborative paths that minimize the global cost of the paths by tak-
ing account for common formation moves: 

	
( )

( )
( )(1) (2)
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(1) (2)

(1) (2)

,
,

g g

s s

v v
v v

min C
σ σ

σ σ
∈Π ×Π


	

Since graph edges are weighted by duration (and cost), the variables 
of the minimization problem above are not only vertex positions but 
also edge durations, which is required to synchronize the agents at 
their formation rendezvous point.

Algorithms

Problem ( )  consists in finding the agents’ paths in their graphs and 
synchronizing them both temporally and spatially, which can be viewed 
as a single path finding problem in a cross-product graph that aggre-
gates the positions of each agent. Figure 2 represents how agents’ 
positions are aggregated and tracked together within a single cross-
position vertex (depicted in yellow in the figure) that can lie at inter-
mediate positions respective to each agent’s graph. In fact, the figure 
shows that it is not sufficient to synchronize each agent’s atomic move 
on the vertices of their respective graphs: in order to make a formation 
at t = 0.6, Agent 1 has to perform 1 atomic move whereas Agent 2 
must execute 2 atomic moves. Therefore, we need to represent an 
intermediate position for Agent 1 between its first and second vertices, 
which coincides with Agent 2’s move through its second vertex. Thus, 
Agent 1 has to control its speed in order to meet Agent 2 at the same 
time point (t = 0.6 in the figure) at the rendezvous point. This example 
shows that edges must contain duration information about which we 
have to reason in order to temporally and spatially synchronize agents.

By casting the collaborative common path planning problem into a sin-
gle path planning problem, we can run an A* algorithm on the cross-
product graph. To this end, additional information must be embedded 
in the nodes of the product graph in order for A* to expand the product 
graph properly. Said differently, rules to expand the product graph on 
nodes closed by A* need specific information explained below.

Optimal algorithm

The optimal algorithm reasons in the combined spatial and temporal 
spaces without decoupling spatial and temporal synchronization 
logics of the agents. To this end, we define the following cross-
product graph.

Cross-product labelled graph

The coupled cross-product labelled graph is defined as ( )= ,V E⊗ ⊗ ⊗  
with: 

•	 [ ] [ ](1) (2)= 0;1 0;1V E E⊗ × × × , such that ( )(1) (1) (2) (2)= , , ,v e e Vα α⊗ ⊗∈  
represents the ( )iα  percentage of completion of each agent  i’s 
move along edge ( )ie  in its own graph. We recall that (1)e  and 

(2)e  are each labelled with the cost and duration of the move of 
the agent in its own graph, meaning that they each take the form 

t = 0.52
α(2) =0.6

α(1) =0.7

t = 0.0

t = 0.4

t = 0.6

t = 0.9

t = 0.1

t = 0.52

Figure 2 – Cross-product graph: at t = 0.52, Agent 1 is at the (1)α  portion of 
the edge linking the first and second vertices of its graph, while Agent 2 is at 
the (2)α  portion of the edge linking the second and third vertices of its graph.
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of a tuple in ( ) ( )i iV V + +× × ×  . It is especially important for 
the understanding of the next paragraphs to note that there can 
exist in each agent’s graph many different edges with the same 
incoming vertex and outgoing vertex but with different durations 
(and costs).

•	 4E V V⊗ ⊗ ⊗
+⊆ × × , such that ( )(1) (1) (2) (2)

1 2= , , , , ,e v v c d c d⊗ ⊗ ⊗  
represents a labelled cross-product transition of both agents 
from a cross-product position 1v⊗  to another cross-product 
position 2v⊗ , with labels ( )(1) (1) (2) (2), , ,c d c d , representing the 
cost and the duration of the original individual graph edges that 
are being travelled along by each agent. These labels are need-
ed when constructing the edges outgoing from a given cross-
product position, in order to know how much time and cost 
remain to be consumed and paid along the current edge of each 
agent’s original graph, in case the cross-product position may 
correspond to an intermediate position of one of the agents in 
its own graph (meaning that the agent has not yet finished trav-
elling along its current edge in its own graph when transitioning 
to another cross-product vertex). 

For instance, consider Figure  2 and assume that Agent  1 
(resp., Agent  2)’s path as it appears from left to right in this fig-
ure is noted as (1)σ  (resp. (2)σ ). The current positions of both 
agents depicted in Figure  2 is encoded in a product graph vertex 

( ) ( )( )(1) (2)
1 = 1 ,0.7, 2 ,0.6v σ σ⊗ , which means that Agent  1 (resp. 

Agent 2) is at 70% (resp., 60%) of completion in transitioning to the 
in-vertex to the out-vertex of its first (resp., second) transition along 
its path. Now, assume that the next event corresponds to Agents 1 
and 2 reaching the out-vertices of their current respective edges 
(resp., ( )(1) 1σ  and ( )(2) 2σ ) simultaneously at t = 0.6, which hap-
pens to be a rendezvous point, the next cross-product vertex will be 

( ) ( )( )(1) (2)
2 = 2 ,0, 3 ,0v σ σ⊗ 1 and the corresponding transition will 

be ( )(1) (2)
1 2= , , ,0.5, ,0.2e v v c c⊗ ⊗ ⊗ , since Agent  1 (resp., Agent  2) 

was traveling along its current edge for = 0.6 0.1 = 0.5d −  (resp., 
= 0.6 0.4 = 0.2d − ) time units.

Graph expansion

Once the cross-product graph is constructed, we can run a single-agent 
path planning algorithm like A* on it, then retrieve the individual moves 
from the cross-product solution plan. Thus, we first need to instantiate 
the cross-product graph: we generate it lazily from the starting cross-
product vertex – which is simply the pair of starting vertices of each 
agent – and expand it on-demand (e.g., when A* looks at successor 
vertices of the current closed vertex) by constructing outgoing cross-
product edges from a given current cross-product vertex. Algorithm 1 
formalizes this lazy cross-product graph expansion.

The algorithm tests different cases corresponding to whether each 
agent i is located at a vertex of its own graph (i.e., ( ) = 1iα ), where 
a decision regarding the next successor vertex to target has to be 
taken, or if it is located between two successive vertices of its own 
graph (i.e., ( )0 < < 1iα ), where it can only continue to execute the 
current move to the next targeted successor vertex. When an agent 
is at a decision point, we iterate over the edges of its own graph 

1	 In this example ( ) ( )(1) (2)2 = 3σ σ  because the agents travel in formation from 
their previous vertices, and their graphs are the same. However, note that in 
general their graphs do not need to be the same, so their edges can be different 
even in formation.

whose incoming vertex is equal to the outgoing vertex of the previ-
ously executed edge (e.g., Lines 3 and 19). Then, we compare the 
remaining durations of the edges of each agent in their own graphs 
(e.g., Lines 4 and 20), in order to know which agent will reach its next 
targeted successor vertex first and update the completion ratio of the 
other agent – which may not reach its next targeted successor vertex 
in the same move – accordingly (e.g., Lines 7, 23 and 27). Note that 
the case ( ) ( ) ( ) ( )(1) (1) (1) (2) (2) (2)1 < 1d e d eα α− ⋅ − ⋅  is impossible, 
since at least one agent reaches its next targeted successor vertex at 
each graph expansion. When both agents are at a decision point (i.e., 
Line 2) we check whether a formation is feasible, in which case we 
add cross-product edges corresponding to the two agents traveling 
along the same common path with appropriate formation costs and 
durations (Lines 13 to 17).

Conditions on initial and goal vertices

Special attention specific to the CCPP problem must be paid to the 
initial and goal vertices. If we do not allow an agent that has reached 
its goal vertex to wait for the other agent to reach its own goal, it sig-
nificantly reduces the chance of finding a solution because it means 
that we would force the two agents to reach their goal vertices at 
the same time. However, such a condition is not desired in practice, 
so we allow each agent to wait for the other agent at its goal verti-
ces by adding in its own graph self-transitions from its goal vertices 
labelled with the durations of all of the edges of the other agent. Doing 
so, whatever the location of the other agent in its own graph, the 
agent at the goal will always transit again to its goal for each atomic 
move of the other agent. Since this "goal holding" property might be 
undesirable in very specific applications, we activate or deactivate it 
according to a test function named can_hold. This logic, which 
is implemented in Lines 4 to 6 of Algorithm 2, is also valid for initial 
vertices since holding the initial vertex of an agent while the other 
has begun to move increases the chance of finding a (spatial and 
temporal) synchronization point where both agents can begin to move 
in formation. Indeed, meeting at a given rendezvous point at a given 
time can be achieved by controlling each agent’s edge speed or initial 
vertex starting time. Even if better formation plans can be found by 
allowing one agent to hold its initial vertex for an amount of time dic-
tated by the other agent’s initial transition duration, it is of course less 
optimal than an approach that would allow a free continuous holding 
duration irrespective of the other agent’s initial transition duration. 
However, such an approach would be much harder computationally, 
since it would require continuous optimization variables to be consid-
ered, whereas our approach allows us to keep reasoning about only 
discrete optimization variables.

Moreover, some applications might require the two agents to start 
at predefined time points, or, in other words, that the difference of 
their starting times be constrained to a predefined value. This is, for 
instance, the case of two flights that might want to fly somewhere in 
formation in order to save fuel burn given the current day’s weather 
conditions but whose takeoff times are set several months in advance 
and cannot be significantly changed at the last minute. To do this, we 
test for a condition must_shift that, if true, adds a predefined 
amount of time to the duration of the first transition of each agent from 
their initial vertices (see Lines 7 to 9 of Algorithm 2). Note that this 
option is incompatible with the "holding" one, since an agent cannot 
start within a predefined time interval from the other agent’s start 
while holding its starting vertex.
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Data: (1) (1) (2) (2)= ( , , , )v e e Vα α⊗ ⊗∈ : cross product vertex
Result: [ ]

e E
e ⊗ ⊗
⊗

∈
: list of cross product edges outgoing from ( )(1) (1) (2) (2), , ,e eα α  

successors ←  list()
if (1) = 1α  and (2) = 1α  then

for ( )(1) (2) (1) (2) (1) (1), :e e E E e e∈ × =.out() .in()  and (2) (2)e e=.out() .in() do
if ( ) ( )(1) (1) (2) (2)<d e d e  then

( ) ( ) ( )
( )

(1) (1)

(2) (2)

(1) (1) (2) (2) d ec c e c e
d e

← + ⋅ ;

( )(1) (1)d d e← ;

(1) 1α ← ; 
(1) (1)

(2) (2)

(2) ( )
( )

d e
d e

α ← ;

else
Symmetry of Lines 5 to 7

v V⊗ ⊗← .add( (1) (1) (2) (2), , ,e eα α );
e E⊗ ⊗← .add( , , ,v v c d⊗ ⊗ );
successors.add(e ⊗);
if can_make_formation( ( ) ( )1 2,e e ) then

( ) ( )( )1 2,c c e e⊗← ; ( ) ( )( )1 2,d d e e⊗← ;
v V⊗ ⊗← .add( (1) (2),1, ,1e e );
e E⊗ ⊗← .add( , , ,v v c d⊗ ⊗ );
successors.add(e ⊗);

else if (1) = 1α  and (2) 1α <  then
for (1) (1) (1) (1): =e E e e∈ .out() .in() do

if ( ) ( )(2) (2) (2) (1) (1)1 < ( )d e d eα− ⋅

( ) ( ) ( )
( ) ( )

(2) (2)

(1) (1)

(2) (1) (1) (2) (2)1 d ec c e c e
d e

α  
← − ⋅ ⋅ + 

 
( ) ( )(2) (2) (2)1d d eα← − ⋅

( ) ( )
( )

(2) (2) (2)

(1) (1)

(1) 1 d e
d e
αα − ⋅

← ; (2) 1α ←

else 

( ) ( ) ( )
( )

(1) (1)

(2) (2)

(1) (1) (2) (2) d ec c e c e
d e

← + ⋅

( )(1) (1)d d e←

(1) 1α ← ; 
(1) (1)

(2) (2)

(2) (2) ( )
( )

d e
d e

α α← +

v V⊗ ⊗← .add( (1) (1) (2) (2), , ,e eα α );

e E⊗ ⊗← .add( , , ,v v c d⊗ ⊗ );
successors.add(e ⊗);

else if (1) < 1α  and (2) = 1α  then
Symmetry of Lines 19 to 27

return successors;

Algorithm 1 – Cross-product graph expansion
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Global algorithm

The optimal CCPP solving procedure is presented in Algorithm 3. It 
proceeds in three logical steps: 

1.	Establish initial and goal conditions using Algorithm  3 
(Line 1); 

2.	 Construct the cross-product initial and goal vertices and run-
ning A* by lazily expanding the cross-product graph on closed 
vertices using Algorithm 2 (Lines 2 to 4); 

3.	 Extract the individual plans of each agent from the cross-product 
plan by looking at cross-product vertices whose completion ra-
tios are equal to 1, meaning that the corresponding agent is 
located at a decision vertex but not in-between two successive 
vertices of its own graph (Lines 5 to 9). 

Decoupled spatial/temporal algorithm

The complexity of the optimal algorithm lies in the coupled spatio-
temporal space: in order to synchronize the agents at potential 
formation points, both spatially and temporally, it has to memorize 
cross-product vertices containing the agents' original graph verti-
ces and completion ratios of traveling along these edges. By noting 
as ( )iD  an upper bound on the number of different durations of each 
travel between two successive vertices of Agent i’s own graph (i.e., 
the maximum number of edges with the same given incoming and 

outgoing vertices) the potential number of cross-product vertices 
explored by A* is 2 2(1) (2) (2) (1) (1) (2) (2) (1)=E D E D V D V D⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . 
In the case where both agents share the same graph and are identi-
cal (implying same possible edge durations) it amounts to visiting 
at most 4 2V D⋅  vertices, which is intractable even for very small 
instances.

A simple idea consists in decoupling the problems of synchronizing 
the agents spatially and temporally. First, we aim at finding a pair of 
vertices for each agent where they can begin a formation by dis-
carding all temporal information on edge durations. It is achieved 
by running lazy A* with a vertex expansion procedure presented in 
Algorithm 4, which is composed of two phases: (1) filter out dura-
tions from each agent’s graph edges by replacing each set of edges 
with the same incoming and outgoing vertices by a single edge with-
out duration and whose cost is averaged on-the-fly over all of the 
costs of the replaced edges (Lines 1 to 10); (2) generate successor 
cross-product vertices from the filtered edges while checking for the 
possibility of beginning a formation, in which case the formation cost 
is appropriately set (Lines 11 to 15). Crucially, a self-transition from 
each agent’s current vertex is added, in order to simulate the fact that, 
in reality, an agent might not have reached its next successor vertex 
when the other has indeed reached its own next vertex (Line  10). 
This trick actually allows the agents to reach a common formation 
point even if their individual numbers of atomic moves to reach it are 
different (see Figure 2).

Data: { }( ) , 1,2i
sv i∈ : Agent i’s starting vertex; { }( ) , 1,2i

gv i∈ : Agent i’s goal vertex
for { }1,2i∈  do

j i←  mod 2+1;
for { }( ) ( ) ( ),i i i

s gv v v∈  do
if can_hold( ( )iv ) then

for ( ) ( )j je E∈  do
( )iE .add( ( ) ( ) ( ) ( )( ), ,0, j ji iv v d e );

if must_shift( ( )i
sv ) then

for ( ) ( ) ( ) ( ): =i i i i
se E e v∈ .in()

[ ] [ ]( ) ( ) ( ) ( ) ( )i i i i i
sd e d e v← +shift( );

Algorithm 2 – Make initial and goal conditions

1
2
3
4
5
6

7
8
9

Data: ( )i
sv : Agent i’s start node; ( )i

gv : Agent i’s goal node; ( )( ) ( ) ( )= ,i i iV E : Agent i’s move graph; :c E⊗ ⊗
+→ : cross-product cost 

function; :h V V⊗ ⊗ ⊗
+× → : cross-product heuristic function

Result: { }( ) , 1,2i iπ ∈ : optimal path from ( )i
sv  to ( )i

gv
make_initial_and_goal_conditions();

(1) (1) (2) (2)(( , ),1,( , ),1)s s s s sv v v v v⊗ ← ;
(1) (1) (2) (2)(( , ),1,( , ),1)g g g g gv v v v v⊗ ← ;

π ⊗ ←  lazy_astar( , ,s gv v h⊗ ⊗ ⊗) using cross_product_graph_expansion;
(1)π ← ; list(); (2)π ← list();

for e π⊗ ⊗∈  do
(1) (1) (2) (2)( , , , )out out out oute e eα α ⊗←  .out();

if (1) = 1outα  then (1)π .add( (1)
oute );

if (2) = 1outα  then (2)π .add( (2)
oute );

return ( )(1) (2),π π ;

Algorithm 3 – Optimal CCPP algorithm
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The second phase consists in planning for the agents’ coordination 
in the temporal space only by running lazy A* with a temporal graph 
expansion schema, which constrains the spatial vertex transitions to 
the plans found during the first spatial planning phase, as formalized 
in Algorithm 5. Thus, the cross-product vertex is composed of the 
pair of indices of the moves in the spatial plans currently executed by 
the agents, which is sufficient to track each agent’s plan execution 
and to obtain the spatial edge corresponding to the current plan indi-
ces (Lines 2 to 6). Once this edge has been extracted, we obtain all 

of the original time-labelled edges with the same incoming and outgo-
ing vertices, in order to retrieve timing information that was lost dur-
ing the first spatial synchronization phase (Lines 7 to 9). Finally, we 
generate successor cross-product vertices from the reconstructed 
time-labelled edges while checking for the possibility of beginning 
a formation, in which case the formation cost is appropriately set 
(Lines 10 to 14). Note that, at this stage, time labels are part of the 
reconstructed vertices so we can check whether it is possible for the 
two agents to simultaneously reach a potential formation vertex.

Data: (1) (2) (1) (2)= ( , )v v v V V⊗ ∈ × : cross-product vertex without time info
Result: 

( )2(1) (2)
[ ]

e V V
e

⊗
+

⊗

∈ × ×
: list of cross-product edges outgoing from v⊗

for { }1,2i∈  do
( )iE ← list(); n ← map();

for ( ) ( ) ( ) ( ): =i i i ie E e v∈ .in()  do
if ( ) ( ),i ie E e e∀ ∈ ≠ .out() .out() then

( ) ( ) ( ) ( ) ( ), , ( )i i i i iE e e c e .add( .in() .out() ) ;
( ) 1in e  ← .out() ;

else
( )( ) ( )i ic e ←

( ) ( )( )( ) ( ) ( ) ( ) ( )
( )

1
1

i i i i i
i

n e c e c e
n e

 ⋅ +  + 
.out()

.out()
;

( ) ( ) 1i in e n e   ← +   .out() .out() ;

( ) ( )( ) , ,0i i iE v v .add( );

successors ← list();
for (1) (1)e E∈   and (2) (2)e E∈   do

successors .add( ( ) ( ) ( ) ( )( ) ( ) ( )( )1 2 1 1 2 2, ,e e c e c e+      );
if can_make_formation( (1) (2),e e  ) then

successors .add( ( ) ( ) ( ) ( )( )1 2 1 2, , ,e e c e e⊗
    );

return successors

Algorithm 4 – Spatial graph expansion

1
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Data: �{ } { }
( )

1,2
i

iπ ∈ : Agent  i’s spatial plan w/o timing information; ( )1 2= ,v k k⊗ : cross-product vertex containing indexes of current 
spatial vertices in Agents 1 and 2’s plans

for { }1,2i∈  do
[ ]( ) ( )i i

iv kπ←  ;
if ( ) 1i

ik π≠ − .length()  then
[ ]( ) ( ) 1i i

iv kπ← + ;
else

( ) ( )i iv v← ;
( )iE ← list();

for ( ) ( ) ( ) ( ): =i i i ie E e v∈ .in()  and ( ) ( )=i ie v.out()  do
( )( )i iE e .add( );

successors ← list();
for (1) (1)e E∈   and (2) (2)e E∈   do

successors .add( ( ) ( ) ( ) ( )( ) ( ) ( )( )1 2 1 1 2 2, ,e e c e c e+      );
if can_make_formation( (1) (2),e e  ) then

successors .add( ( ) ( ) ( ) ( )( )1 2 1 2, , ,e e c e e⊗
    );

return successors

Algorithm 5 – Temporal graph expansion
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The global decoupled spatio-temporal procedure is presented in 
Algorithm  6. The pseudo-code is quite obvious given the previous 
explanations of the successive spatial and temporal synchronization 
phases. Whereas this decoupled schema certainly does not bring 
optimal solutions to the CCPP problem, it allows us to solve large 
problems with satisfactory quality in a very small fraction of the time 
spent by the optimal coupled algorithm.

Heuristics

Given that our algorithms rely on A*, we need a heuristic function 
to guide the search in the cross-product graph. Designing a generic 
admissible and informative heuristic is especially challenging because 
the cost function changes when the agents move in formation and we 
do not know in advance when and where they will begin or end a for-
mation pattern. A brute-force method would consist in iterating over 
all possible pairs of each agent’s vertices representing joining and 
breaking formation points, in order to ease heuristic estimate com-
putations. However, we would spend too much time iterating over 
too numerous pairs, which would ruin the benefit of using heuristic 
functions.

Admissible heuristic

A simple admissible but non-informative heuristic estimate consists 
in summing individual heuristic estimates for each agent in their own 
graphs using formation costs c⊗ , even if they do not travel in formation. 

Any admissible heuristic for single-agent path planning (e.g., Euclidean 
distance, Manhattan distance, etc.) can be used to calculate the indi-
vidual heuristic estimates but considering formation costs instead of 
standard single-agent costs (i.e., like in the case of agents travelling 
in formation from their starting to ending locations). This allows us to 
obviate the difficult question of when and where they join together or 
break the formation, but we lose the crucial information that their indi-
vidual moving costs are actually generally much higher when they do 
not travel in formation. Formally, we note as ( ) ( ) ( ):i i ih V V +× →  a 
heuristic function defined on Agent i’s vertices in its own graph, such 
that ( ) ( )( ) ( ) ( ) , ( ) ( ), ,i i i i i i

A B A Bh v v C v v⊗  where ( ), ( ) ( ),i i i
A BC v v⊗  is Agent i’s 

contribution to the duet cost-to-go function if it travels in formation with 
the other agent from the starting vertex ( )i

Av  to the target vertex ( )i
Bv . 

Said differently, ( )ih  is computed with edge costs assumed to be all 
equal to Agent i’s contribution to c⊗ , even if it does not travel in forma-
tion. Therefore, an admissible heuristic is (1) (2)=admh h h⊗ + .

Informative heuristic

In order to use the important information that the cost function is 
higher when the agents do not move in formation, we try to approxi-
mately guess with simple geometric reasoning where the agents 
will make a formation and further break it. This simple geometric 
method, depicted in Figure 3 and formalized in Algorithm 7, assumes 
the vertices of the agents’ own graphs to be elements of a Euclid-
ean space. Given a pair of starting vertices (1) (2)( , )A Av v  and target 
vertices (1) (2)( , )B Bv v  we compute their respective barycenters Av  

Data: � ( )i
sv : Agent i’s start node; ( )i

gv : Agent i’s goal node; ( )( ) ( ) ( )= ,i i iV E : Agent i’s move graph; :c E⊗ ⊗
+→ : cross-product cost 

function; :h V V⊗ ⊗ ⊗
+× → : cross-product heuristic function

Result: { }( ) , 1,2i iπ ∈ : optimal path from ( )i
sv  to ( )i

gv
make_initial_and_goal_conditions();

( )(1) (2),s s sv v v⊗ ←
( )(1) (2),g g gv v v⊗ ←

spatialπ ⊗ ← lazy_astar( , ,s gv v h⊗ ⊗ ⊗) using spatial_graph_expansion;
( )

{1,2}{ }i
iπ ∈ ←  extract_individual_plans( spatialπ ⊗ );
( )0,0sv⊗ ← ;
( )(1) (2)1, 1gv π π⊗ ← − −  .length() .length() ;

temporalπ ⊗ ←  lazy_astar( , ,s gv v h⊗ ⊗ ⊗
  ) using temporal_graph_expansion( ( )

{1,2}{ }i
iπ ∈ );

return extract_individual_plans( temporalπ ⊗ );

Data: ( )
{1,2}{v }i

A i∈ : Agent i’s starting point (vector); ( )
{1,2}{v }i

B i∈ : Agent i’s target point (vector); > 0ε : spatial precision between pos-
sible joining or breaking points 
Result: Heuristic estimate of the CCPP problem from joint starting point to joint target point

( )(1) (2)1
2v v vA A A← + ; ( )(1) (2)1

2v v vB B B← + ;

{ }v v: B AN argmin n n ε
−

+← ∈    ;
for 0i ←  to N  do

( )v v v vi
i s B AN← + −    ;

( )(1) (2) (1) (2)(v , v ), (v , v )A A B Bh⊗ ←  ( ) ( ){ }(1) (1) (1) (2) (2) (2)
0 /2 v v v v v v v v v vi N N i i i A N i B i A N i Bmin ω ω ω⊗

− − −− + − + − + − + −      ; 

return ( )(1) (2) (1) (2)(v , v ), (v , v )A A B Bh⊗ ;

Algorithm 6 – Spatio-temporal decoupled CCPP

Algorithm 7 – CCPP heuristic on Euclidean space
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and Bv  (Line 1) and assume that the agents will travel in formation 
somewhere along the segment joining these barycenters – which is 
obviously not guaranteed, but hopefully close to the optimal forma-
tion segment, preventing us from proving the admissibility of this 
heuristic estimate. Then we iterate over possible joining and breaking 
points along the median segment [ ; ]A Bv v  , assumed to be symmet-
ric for simplicity (Lines 2 to 4). Finally (Line 5), we search for the 
minimum estimate over these possible joining/breaking patterns of 
the sum of the individual contributions of the agents when not in for-
mation from their initial starting vertices to the joining point and from 
the breaking point to their target vertices (blue and red segments in 
Figure 3), and of the heuristic formation cost-to-go from the joining 
point to the breaking point (violet segment in Figure 3).

Experiments

Navigation grids

In this section we propose to experimentally compare the different 
variants of our CCPP solving algorithms on navigation grids that are 
Euclidean spaces, so that we can test our informative geometric heu-
ristic. As shown in Figure 1, we experimented with various random 
grids having various sizes, obstacle densities and formation moving 
costs. Table 2, whose caption defines shortcut names for the tested 
variants, summarizes the results. We implemented the algorithms in 
pure Python and run the tests on Intel’s core i7 with 2.80 GHz CPUs 
and 16 Go of RAM (the tests used at most 1.5 Go of RAM). For each 

(1)
Av

Av

(2)
Av

(1)
Bv

(2)
Bv

Bv

iv

N iv −

(1)
,A iu

(1)
,B iu

(2)
,A iu

(2)
,B iu

iu⊗

Figure 3 – Heuristic estimate of the CCPP problem in Euclidean spaces from a 
joint position (1) (2)= ( , )A A Av v v⊗  to (1) (2)= ( , )B B Bv v v⊗ : ( ), =A Bh v v⊗ ⊗ ⊗

( ) ( ){ }(1) (1) (1) (2) (2) (2)
0 /2 , , , ,i N i A i B i A i B imin u u u u uω ω ω⊗ ⊗ + + + + , where ω 's 

represent speed-dependent moving costs per length unit as functions of 
duration-labelled edges

(a) Small sparse grid (b) Large dense grid 

Figure 4 – Formation path planning experimented on randomly generated grids with various sizes and obstacle densities. Individual optimal agents’ paths 
regardless of the CCPP problem are in red and blue, while CCPP agent paths are in yellow.

PATHS TEAM COST NUMBER OF EXPLORED A* NODES CPU TIME (seconds)
Problem CA CI DA DI CA CI DA DI CA CI DA DI

NG-5-5-75 1.8 2.18 1.8 1.8 22525 11577 422 296 2.67 0.888 0.0377 0.0328
NG-5-5-50 1.1 1.1 1.1 1.1 6819 2456 164 86 0.319 0.0549 0.0169 0.013

NG-10-10-75 2.94 2.99 4.4 2.99 582997 33464 2669 784 85.5 1.92 0.658 0.263
NG-10-10-50 3.1 3.2 3.43 3.5 512555 159521 2107 1620 77 16 0.6 0.47
NG-20-20-75 — 7.03 9.7 8.23 — 757991 17775 8004 — 99.8 6.35 3.59
NG-20-20-50 — 7.13 8.05 7.58 — 1139752 11859 4066 — 151 11.2 5.83
NG-40-40-75 — — 17 16.7 — — 47172 14167 — — 153 49.8
NG-40-40-50 — — 16.9 14.3 — — 21410 18504 — — 184 98.7
NG-80-80-75 — — — 34.1 — — — 97244 — — — 732
NG-80-80-50 — — — 40.6 — — — 110855 — — — 1140

Table 1 – Navigation grid experiments: comparison of solution path team costs, numbers of nodes explored by A* in the cross-product graph and CPU times, 
for the coupling algorithm using the admissible generic heuristic (CA) or the informative geometric one (CI), and similarly for the decoupling algorithm (DA and 
DI). Problems are noted as NG-X-Y-P, where X and Y stand for the x and y dimensions of the grid, and P represents the cost reduction percentage of edges where 
the two agents move in formation side by side, in comparison with non-formation edges (i.e., (1) (2)= (1 ) /100 ( )c P c c⊗ − × + ).
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algorithm we time out the search at 3 minutes of computation. Note 
that the only optimal algorithm is CA, i.e., the coupling algorithm 
equipped with the admissible heuristic.

Coupling algorithm vs. decoupling algorithm

The coupling algorithms can only solve the first problems, since they 
explore significantly more nodes during A* graph search than the 
decoupling algorithms do: up to 280 times more for the same heuris-
tics. The best version of the coupling algorithm times out after the 7th 
problem. The decoupling algorithms’ solution quality is at most at 12% 
of the optimal solution, even finding optimal ones on small problems.

Admissible heuristic vs. informative heuristic

As expected, the informative heuristic allows the coupling or decou-
pling algorithms to solve more problems, since it provides more 
accurate estimates of the team cost-to-go. However, it is not admis-
sible, which degrades the solution quality of the coupling algorithm 
in comparison with the admissible heuristic. However, interestingly, 
we observe the inverse behavior for the decoupling algorithm, which 
seems to indicate that the negative impact on the solution quality of 
decoupling is higher than when using a non-admissible heuristic.

Impact of formation edge cost reduction

Since higher cost reductions tend to incentivize agents more to make 
formations, we expect the CCPP problem to be more difficult to solve 
with lower cost reductions, since more cross-product nodes should 
be explored before finding potential joining points that can provide 
some benefits. For reasons that we do not fully understand yet, this 
is partially observed with the informative heuristic only. More nodes 
are systematically explored by A* with 75% formation cost reduction 
using the admissible heuristic for both algorithms.

Formation Flight

We ran the DI algorithm, i.e., the only scalable one, on formation flight 
problems for hundreds of flights constrained to fly over official airway 
graphs published by aviation authorities, which contain more than 
30000 of vertices at different altitudes. Each aircraft is assigned a 
route, which is defined by a pair of departure and destination airports, 
but the flight paths have to be optimized in the 4D space composed 
of the aircraft’s 3D waypoint positions and the times when it flies 
through each waypoint. In addition to optimizing the flight routes for a 
given pair of leader-follower aircraft, we must choose the best leader-
follower pairs among all of the possible pairs. To this end, we note as 

N +∈  the number of aircraft to pair and as [ ]21; N⊆  the possible 
leader-follower pairs for which the CCPP problem returns a feasible 
solution. For [ ]1;i N∈ , we note as [ ]{ }( ) = 1; , ( , )F i j N i j∈ ∈   
the set of possible followers that can pair with i. Symmetrically, for 
all [ ]1;j N∈ , [ ]{ }( ) = 1; , ( , )L j i N i j∈ ∈   is the set of possible 
leaders that can pair with j. Finally, we note ijc  the global cost of the 
flights of a leader i and follower j flying in formation on a subset of 
their routes (i.e., solution to the CCPP problem), and ic  and jc  the 
costs of their solo flights if they had flown without pairing at some 
point.

The solution is computed in two successive phases. First, we com-
pute all of the possible leader-follower formation routes by running 
the CCPP algorithm on all possible pairs of aircraft, as well as all of 
the solo flight routes. This phase allows us to compute the set   
of feasible formation flights, to fill in the formation costs ijc  for all 
( , )i j ∈ , and the solo flight costs ic  for all [ ]1;i N∈ . Second, we 
compute the best possible pair assignments by running the following 
integer linear program whose optimization variables are {0,1}ijf ∈ : 

	 ( )
( , )

: ij i j ij
i j

maximize f c c c
∈

+ −∑


	 (1)

	 [ ]
( )

: 1; , 1
F

ij
j i

subject to i N f
∈

∀ ∈ ∑


 	 (2)

	 [ ]
( )

1; , 1
L

ij
i j

j N f
∈

∀ ∈ ∑


 	 (3)

	 ( )
( )

, , 1
L

ij ki
k i

i j f f
∈

∀ ∈ + ∑


  	 (4)

	 ( )
( )

, , 1
F

ij jk
k j

i j f f
∈

∀ ∈ + ∑


  	 (5)

Decision variables ijf  are equal to 1 whenever Leader i is paired with 
Follower j. Constraint 2 (resp. 3) means that each possible leader i 
(resp. follower j) can be paired with a single follower j (resp. leader i). 
Constraint 4 (resp. 5) means that a given leader (resp. follower) can-
not be the follower (resp. leader) of another aircraft. The objective 
function is to maximize the gain of flying in formations, i.e., the differ-
ence between the sum of individual solo flight costs i jc c+  and the 
formation cost ijc  whenever a formation ijf  is selected. An excerpt 
of the resulting formation flights over the Atlantic Ocean is shown in 
Figure 5. Note that aircraft have to fly though so-called North Atlantic 
Tracks, which are very beneficial to formation flights since solo flights 
take those tracks anyway.

Figure 5 – Formation Flight test bench: common formation paths are shown in solid red, solo (non-cooperative) paths appear in dashed green, the airway graph 
is shown in solid gray, and airports appear as blue dots.
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Discussion

Our experimental results show that only the decoupling algorithm 
equipped with informative heuristics like the geometric one that we 
proposed can reasonably scale. However, we also observed a loss in 
quality, which can be of up to 12 % of the optimal team cost on some 
benchmarks even if the loss is in general much lower. These results 
encourage us to conduct further research on improving the decoupling 
algorithm by trading a little computation time off for quality regaining. 
Possible research directions would consist in alternatively iterating 
between the spatial and temporal synchronization phases instead of a 
single iteration that freezes the spatial phase independently from the 
temporal phase’s solution constraints as we currently do.

Another important line of research would look at improving heuris-
tics: making the informative geometric heuristic admissible, as well 
as designing a generic informative heuristic that differentiates the 
costs of the pre- and post-formation paths of the agent from the for-
mation common path – like our geometric heuristic, but in general 
state spaces that are not necessarily Euclidean. Finally, extension of 
the CCPP problem to continuous edge duration spaces would require 
the mixing of A* search in the spatial space, followed by scheduling 
techniques in the temporal space to control the speed of frozen spatial 
moves as a true continuum of values instead of continuous values 
chosen in a discrete set [14]. However, note that such settings are 
not always desirable, especially not in formation flight, as explained 
in the introduction 
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